Registry No. CO2. 124-38-9; n-dotriacontane, 544-85-4; n-docosane, 629-97-0.

(11) Sebastian, H. M.; Simnick, J. J.; Lin, H.-M.; Chao, K.-C. J. Chem. Eng. Data 1980, 25, 138. (12) Hule, N. C.; Luks, K. D.; Kohn, J. P. J. Chem. Eng. Data 1973, 18,

Literature Cited

- Reamer, H. H.; Sage, B. H. J. Chem. Eng. Data 1963, 8, 500.
 Kulkami, A. A.; Zarah, B. Y.; Luks, K. D.; Kohn, J. P. J. Chem. Eng.
- Data 1974, 19, 92. Stewart, W. C.; Nielsen, R. F. *Prod. Mon.* Jan 1954, 18, 27.
- Meldrum, A. H.; Nielsen, R. F. *Prod. Mon.* Aug 1955, *19*, 22. Schneider, G.; Alwani, Z.; Helm, W.; Horvath, E.; Franck, E. *Chem.-Ing.-Tech.* 1967, *39*, 649. (5)
- Schneider, G. Chem. Eng. Prog., Symp. Ser. 1968, 64, 9. Schneider, G. Adv. Chem. Phys. 1970, 17, 1. Francis, A. W. J. Phys. Chem. 1954, 58, 1099. (6)
- (8)
- Hayduk, W.; Walter, E. B.; Simpson, P. J. Chem. Eng. Data 1972, 17, (9) 59
- (10) King, M. B.; Al-Najjar, H. Chem. Eng. Sci. 1977, 32, 1246.

- 311. (13) Hottovy, J. D.; Luks, K. D.; Kohn, J. P. J. Chem. Eng. Data 1981, 26, 256.
- (14) Angus, S.; Armstrong, B.; de Reuck, K. M. "International Thermodynamic Tables of the Fluid State Carbon Dioxide"; Pergamon Press: Oxford: 1976.
- Vargaftik, N. B. "Tables on the Thermophysical Properties of Liquids (15)and Gases", 2nd ed.; Wiley: New York, 1975; pp 167-8.
- (16) Robinson, R. L. Okiahoma State University, Stillwater, OK, personal communication, 1983.

Received for review October 17, 1983. Accepted April 10, 1984. Support for this research was provided by the National Science Foundation (Grant No. CPE-8100430). The apparatus used is part of the *PVTx* Laboratory at the University of Tulsa and was purchased with funds provided by several industries, the University of Tulsa, and a National Science Foundation specialized equipment grant (No. CPE-8014650).

Vapor-Liquid Equilibria in Mixtures of Cyclohexane and Methyl Methacrylate

Diane M. Hull and Benjamin C.-Y. Lu*

Department of Chemical Engineering, University of Ottawa, Ottawa, Canada K1N 9B4

Isothermal vapor-liquid equilibrium values were measured for mixtures of cyclohexane and methyl methacrylate at 318.12, 333.13, and 348.14 K by using a modified Dvorak and Boublik recirculating still. The experimental results were correlated with the Wilson equation by fitting the total pressure and vapor composition values. A binary azeotrope was found to exist at all three temperatures.

Introduction

An ester interchange reaction between methyl methacrylate (MMA) and higher alcohols can be carried out in the presence of a catalyst to produce higher esters. This transesterification of alcohols is usually conducted in an inert solvent, such as hexane, benzene, or cyclohexane, which can form a low-boiling azeotrope with the liberated alcohols.

The data available in the literature on the vapor-liquid equilibrium (VLE) values for mixtures of cyclohexane and MMA are limited to those reported by Frolova et al. (1) at 760 mmHg (101.325 kPa). It appears that these values are of uncertain quality. The purpose of this work is to establish isothermal VLE values for the mixture at three temperatures by means of a recirculating still.

Experimental Section

Chemicals. Phillips 66 Research-grade cyclohexane, supplied by the Phillips Petroleum Co., and Aldrich Analyzed-grade MMA, containing 65 ppm hydroquinone monomethyl ether, supplied by the Aldrich Chemical Co., were used without further purification. The purity of both liquids was estimated to be 99 mol % minimum. Physical constants of these materials are given in Table I. The vapor pressure data available in the literature for pure MMA are generally not in good agreement, and for this reason those that were obtained in this work were preferred.

Apparatus. Vapor-liquid equilibria were established by means of a modified Dvorak and Boublik recirculating still, whose operation has been previously described (2, 3). The temperature of the equilibrium mixture was measured by using a Hewlett-Packard (Model 2801 A) guartz thermometer, which was checked at the triple point of water. The accuracy of the temperature measurement is estimated to be ±0.01 K. For pressure measurements, a Texas Instruments pressure gauge (type 144-01) together with a Bourdon Capsule (0-174 kPa) was used. This instrument was calibrated by measuring the vapor pressure of distilled and demineralized water in a Swietoslawski type ebulliometer, and checked by a mercury manometer in conjunction with a cathometer. The system pressure was controlled by a two-liquid manostat. The accuracy of the pressure measurements is estimated to be ± 0.05 torr.

Analyses of the condensed vapor and liquid samples were made with an Anton-Paar K.G. (Model DMA 02A) digital densimeter with its temperature maintained at 288.15 \pm 0.01 K. The accuracy of the determined composition is estimated to be ± 0.002 mole fraction.

Results and Discussion

The experimentally determined equilibrium pressure, P, and liquid and vapor compositions, x and y, together with the calculated activity coefficients, γ_i , are listed in Table II.

The values of ln γ_1 were obtained from

$$\ln \gamma_{1} = \ln \left[y_{1} P / (x_{1} p_{1}^{\circ}) \right] + (B_{11} - v_{1}^{\circ}) (P - p_{1}^{\circ}) / RT + (1 - y_{1})^{2} \delta_{12} P / RT$$
(1)

and similarly for ln γ_2 . In these equations

$$\delta_{12} = 2B_{12} - B_{11} - B_{22} \tag{2}$$

and x_1 and y_1 are the equilibrium mole fractions of cyclohexane in the liquid and vapor phases at pressure P. The quantities p_i° , B_{ii} , and v_i° are the vapor pressure, second virial coefficient, and liquid molar volume of component i and B_{12} is the cross second virial coefficient. The experimentally obtained pi° values as listed in Table I were used in the calculation. The values of v_i° for cyclohexane and MMA were taken from Timmermans (4) and Matheson et al. (5).

Since values of B_{μ} and B_{12} are not available at the three temperatures investigated, they were estimated by using the

		$ ho(288.15 \text{ K}), \text{ g/cm}^3$			mol	ar vol, cm ³ /g-m	ol	
		exptl	lit.	- 31	8.12 K	333.13 K	348.14	K
cyclohexane methyl methacrylate		0.7832	0.78315 (4)) 11	1.57 (4)	113.78 (4)	116.08	(4)
		0.9491 0.9488 (5		109.49 (5)		111.67 (5)	114.00	(5)
				vapor	press., torr			
		318.1	2 K	33	33.13 K		348.14 K	<u></u>
		exptl	lit.	exptl	lit.	explt	li	
cyclohexane methyl methacryalte		224.24 94.74	224.62 (6) 90.9 (7) 95.29 (8)	388.86 180.59	388.91 (6) 178.6 (7) 181.37 (8)	637.32 322.89	637.3 316.3 323.1	2 (6) (7) 3 (8)
	second	l virial coeff, c	m ³ /g-mol					
	318.12 K	333.13 K	348.14 K	$T_{\rm c}$, K	$P_{ m c}$, atm	$V_{\rm c},{\rm cm^3/g}{ m -mol}$	ω	μ, D
cyclohexane methyl methacrylate	-1529.0 -2260.0	-1333.3 -1915.8	-1178.2 -1650.0	553.4 (9) 554.75 (10)	40.2 (9) 35.8 (10)	308.0 (9) 332.9 (10)	0.213 (9) 0.330	0.3 (9) 1.675 (11)

Table I. Physical Properties of Pure Components Used

empirical correlation of Tsonopoulos (*12*). The calculated B_{ij} values together with all the pure-component properties used in their calculation are also listed in Table I. It should be noted that the acentric factor that was used for MMA was that of its homomorph, 2-methylhexane (9). The B_{12} values obtained are -1757.7, -1520.3, and -1333.6 cm³/g-mol for the temperatures 318.12, 333.13, and 348.14 K, respectively.

An attempt was made to detect the possible occurrence of polymerization of MMA throughout the work. The results indicate that the volatility of the shipping inhibitor is adequate for preventing the polymerization of MMA in the condensed vapor.

The thermodynamic consistency of the data was tested by the area test of Redlich-Kister (13). The net areas obtained were 1.2%, 0.8%, and 0.2% of the total area for the temperatures 318.12, 333.13, and 348.14 K, respectively.

The data were correlated by using the Wilson equation (14) where

 $\ln \gamma_1 =$

$$-\ln(x_1 + \Lambda_{12}x_2) + x_2 \left(\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1}\right) (3)$$

 $\ln \gamma_2 =$

$$-\ln (x_{2} + \Lambda_{21}x_{1}) - x_{1} \left(\frac{\Lambda_{12}}{x_{1} + \Lambda_{12}x_{2}} - \frac{\Lambda_{21}}{x_{2} + \Lambda_{21}x_{1}} \right) (4)$$
$$\Lambda_{12} = (v_{2}^{\circ}/v_{1}^{\circ}) \exp(-\Delta\lambda_{12}/RT)$$
$$\Lambda_{21} = (v_{1}^{\circ}/v_{2}^{\circ}) \exp(-\Delta\lambda_{21}/RT)$$
(5)

The quantities v_1° and v_2° are the liquid molar volumes of cyclohexane and MMA, respectively. The parameters $\Delta\lambda_{12}$ (= $\lambda_{12} - \lambda_{11}$) and $\Delta\lambda_{21}$ (= $\lambda_{12} - \lambda_{22}$) were obtained by fitting the total pressure and vapor composition with the maximum like-lihood principle and are reported in Table III. The calculated y_1 and P at given T and x_1 are compared with the experimental values in Figure 1. The average absolute deviations obtained in the calculated y_1 and P values are also reported in Table III.

Using the parameter values reported in Table III, we calculated values of γ_i and compared them with the experimental values. The average absolute deviations between experimental and calculated γ_1 values, $|\Delta \gamma_1|_{\rm av}$, are 0.01, 0.01, and 0.01 and the corresponding $|\Delta \gamma_2|_{\rm av}$ values are 0.02, 0.01, and 0.01 for the temperatures 318.12, 333.13, and 348.14 K, respectively.

An azeotrope exists in the binary mixture at the three temperatures studied. The calculated azeotropic composition and pressure at these temperatures agree well with those obtained graphically as shown in Table IV.

Glossary

B _{ii}	second virial coefficient of pure component /
B ₁₂	cross virial coefficient

Figure 1. Comparison of calculated total pressures and vapor mole fractions with experimental results for cyclohexane (1) and methyl methacrylate (2) mixtures at three isothermal conditions.

GEmolar excess Glbbs free energy of mixingNnumber of observations

Table II.	Isothermal	Vapor-Liq	uid Equili	brium Results
for Cyclo	hexane (1) a	nd Methyl	Methacry	late (2)

1 0,0101101141				(-)	
<i>x</i> ₁	y_1	P, torr	γ_1	γ_2	
		318.12 K			
0.047	0.198	112.93	2.14	1.00	
0.066	0.258	119.60	2.11	1.00	
0.103	0.346	131.33	1.98	1.01	
0.145	0.421	142.91	1.86	1.02	
0.197	0.494	156.21	1.76	1.03	
0.273	0.569	171.66	1.60	1.07	
0.357	0.630	185.60	1.47	1.12	
0.443	0.680	196.53	1.35	1.18	
0.529	0.722	205.63	1.25	1.27	
0.605	0.753	211.73	1.18	1.38	
0.671	0.782	216.63	1.13	1.50	
0.731	0.810	220.13	1.09	1.62	
0.771	0.831	222.15	1.07	1.71	
0.807	0.849	223.78	1.05	1.82	
0.867	0.882	225.76	1.02	2.09	
0.907	0.912	226.34	1.01	2.23	
0.935	0.933	225.98	1.01	2.43	
0.956	0.953	225.71	1.00	2.51	
0.964	0.961	225.53	1.00	2.55	
		333.13 K			
0.039	0.152	204.63	2.08	1.00	
0.061	0.215	216.56	1.99	1.00	
0.094	0.291	232.93	1.88	1.00	
0.137	0.372	253.03	1.79	1.01	
0.183	0.441	271.90	1.70	1.02	
0.247	0.510	294.15	1.57	1.05	
0.335	0.587	319.52	1.45	1.0 9	
0.421	0.644	339.28	1.34	1.14	
0.506	0.688	354.70	1.24	1.22	
0.581	0.726	365.94	1.18	1.30	
0.656	0.762	375.61	1.12	1.41	
0.702	0.785	380.39	1.09	1.49	
0.756	0.815	385.93	1.07	1.59	
0.798	0.836	388.24	1.05	1.72	
0.833	0.860	390.31	1.04	1.78	
0.893	0.900	391.87	1.02	1.99	
0.937	0.933	391.50	1.00	2.27	
0.963	0.958	390.75	1.00	2.41	
		249 14 K			
0.058	0 1 8 2	279 69	1 88	1.00	
0.038	0.105	303 96	1.83	1.00	
0.004	0.240	496 27	1.00	1.00	
0.132	0.000	420.37	1.71	1.01	
0.100	0.353	401.10	1.00	1.01	
0.227	0.400	404.00	1.00	1.03	
0.311	0.037	521.03	1.44	1.07	
0.399	0.004	591 90	1.04	1.11	
0.400	0.000	500 92	1.20	1.17	
0.002	0.700	610 20	1 1 0	1.40	
0.031	0.700	010.00	1.12	1.04	
0.009	0./00	023.02	1.09	1.41	
0.740	0.001	001.04	1.07	1.00	
0.780	0.024	000.00	1.00	1.09	
0.624	0.049	039.92	1.00	1.00	
0.882	0.000	043.10	1.02	1.60	
0.927	0.924	642.38	1.00	2.03	
0.967	0.963	640.00	1.00	Z.18	

Ρ

p,° vapor pressure of pure component i

R

gas constant Τ absolute temperature

total pressure

Table III. Wilson Parameters and Average Absolute Deviations in the Calculated y_1 and P Values

	318.12 K	333.13 K	348.14 K
$\Delta \lambda_{12}$, cal/g-mol	138.67	120.25	112.68
$\Delta \lambda_{21}$, cal/g-mol	557.01	529.03	490.85
$ \Delta y_1 _{av}^{a}$	0.0023	0.0023	0.0019
$ \Delta P _{av}$, torr	0.1476	0.3190	0.4996

^a Average deviation $|\Delta X|_{av} = (\sum |X_{exptl} - X_{calcd}|)/N$.

Table IV.	Azeotropic	Mole Fra	action and	Pressure	for
Cyclohexa	ne and Met	hyl Meth	acrylate N	lixtures	

	azeot compr fract cycloł	azeotropic compn, mole fraction of cyclohexane		azeotropic press., torr	
temp, K	exptl	calcd	exptl	calcd	
318.12	0.921	0.923	226.4	226.2	
333.13	0.915	0.916	392.5	392.3	
348.14	0.906	0.909	643.8	643.2	

v,° molar volume of pure liquid / mole fraction of component i in liquid

mole fraction of component / in vapor

 γ_{I} liquid activity coefficient of component /

 Λ_{12} , parameters in Wilson equation

$\Lambda_{21}, \\ \Delta \lambda_{12}, \\ \Lambda \lambda_{12}, \\ \Lambda \lambda_{12}$	
ΔΛ ₂₁	dinole moment
ρ	density

X

y_l

acentric factor ω

Registry No. Cyclohexane, 110-82-7; methyl methacrylate, 80-62-6.

Literature Cited

- Frolova, E. A.; Ustavshchikov, B. F.; Ershova, T. P.; Khalistova, I. D. Osnov. Org. Sint. Neftekhim. 1978, 6, 109.
 Boublikova, L.; Lu, B. C.-Y. J. App. Chem. 1969, 19, 89.
 Polak, J.; Lu, B. C.-Y. J. Chem. Thermodyn. 1972, 4, 469.
 Timmermans, J. "Physico-Chemical Constants for Pure Organic Compounds"; Eisevier: Amsterdam, 1950.
 Matheson, M. S.; Aver, E. E.; Bevilacqua, E. B.; Mart, E. J. J. Am. Chem. Soc. 1949, 71, 497.
 Boublik, T.; Fried, V.; Hala, E. "The Vapour Pressures of Pure Substances"; Eisevier: Amsterdam, 1973.
 Stuli, D. R. Ind. Eng. Chem. 1947, 39, 517.
 Boublik, T. Institute of Chemical Process Fundamentals, Prague, Czechosłovakia, personal communication, 1979.
 Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. "The Properties of Gases and Liquids", 3rd ed.; McGraw-Hill: New York, 1977.
 Foerst, W.; "Fritz Ulimanns Encykopădie der Technischen Chemie", 3rd ed.; Urban and Schwarzenberg: Munich, 1960; Vol. 12.
 Le Fevre, R. J. W.; Sundaram, K. M. S. J. Chem. Soc. 1963, 1880.
 Tsonopoulos, T. AIChe J. 1978, 24, 1112.
 Rediich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345.
 Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127.

Received for review September 23, 1983. Accepted May 30, 1984. We are indebted to the Natural Sciences and Engineering Research Council of Canada for financial support.